Current Electricity

- The continuous flow of charge in a complete circuit is called current electricity.
- Electric current is defined as the amount of charge passing a point in a conductor every second
- Electric current is measured in amperes (A)
- Small currents are measured in milliamperes (1000 mA = 1 A)

Resistance and Ohm's Law

- Resistance is theproperty of any material that slows down the flow of telectrons and converts electrical energy into other forms of energy.
- Electrical resistance is the ratio of the voltage to the current.
- The unit of measurement for electrical resistance is the ohm (Ω)
- The mathematical relationship for ohm's law compares:
- Voltage (V) - measured in volts (V)
- Current (I) - measured in amperes (A)
- Resistance (R) - measured in ohms (Ω)

Ohm's Law: $\mathrm{R}=\frac{V}{I} \quad$ It is more commonly written as $\mathrm{V}=\mathrm{IR}$

We use the formula as shown below:
What is the resistance of a flashlight bulb if there is a current of 0.5 A though a lightbulb when connected to a 1.5 V battery?

What you need to know: $\mathrm{R}=$?
What you already know: $\mathrm{V}=1.5 \mathrm{~V}$

$$
\mathrm{I}=0.5 \mathrm{~A}
$$

Solve: $\mathrm{R}=\frac{V}{I}=\frac{1.5 \mathrm{~V}}{0.5 \mathrm{~A}}=3.0 \Omega$
Answer: The resistance is 3.0Ω

If you're asked to find resistance use $\mathrm{R}=\frac{V}{I}$ If you're asked to find resistance use $V=I R$ If you're asked to find current use $\mathrm{I}=\frac{V}{R}$

The formula triangle

